Simulating prescribed particle densities in the grand canonical ensemble using iterative algorithms.

نویسندگان

  • Attila Malasics
  • Dirk Gillespie
  • Dezso Boda
چکیده

We present two efficient iterative Monte Carlo algorithms in the grand canonical ensemble with which the chemical potentials corresponding to prescribed (targeted) partial densities can be determined. The first algorithm works by always using the targeted densities in the kT log(rho(i)) (ideal gas) terms and updating the excess chemical potentials from the previous iteration. The second algorithm extrapolates the chemical potentials in the next iteration from the results of the previous iteration using a first order series expansion of the densities. The coefficients of the series, the derivatives of the densities with respect to the chemical potentials, are obtained from the simulations by fluctuation formulas. The convergence of this procedure is shown for the examples of a homogeneous Lennard-Jones mixture and a NaCl-CaCl(2) electrolyte mixture in the primitive model. The methods are quite robust under the conditions investigated. The first algorithm is less sensitive to initial conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular grand-canonical ensemble density functional theory and exploration of chemical space.

We present a rigorous description of chemical space within a molecular grand-canonical ensemble multi-component density functional theory framework. A total energy density functional for chemical compounds in contact with an electron and a proton bath is introduced using Lagrange multipliers which correspond to the energetic response to changes of the elementary particle densities. From a gener...

متن کامل

Grand canonical ensemble Monte Carlo simulation of a lipid bilayer using extension biased rotations

The cavity-biased grand-canonical ensemble method was applied to the simulation of a lipid bilayer using an enhanced Monte Carlo sampling technique. The enhancements include controlling the torsion and molecular rotation step size based on the lipid’s conformation and controlling the order of torsion change attempts. It was found that the proposed sampling technique significantly enhances the r...

متن کامل

Molecular dynamics simulations in the grand canonical ensemble: Formulation of a bias potential for umbrella sampling

An extended Hamiltonian technique for performing grand canonical ensemble molecular dynamics simulations has been reformulated to include umbrella sampling, thus improving the efficiency of particle creation and annihilation processes. This was accomplished through incorporation of a bias potential in the Hamiltonian that modifies the free energy contour between integer particle number states. ...

متن کامل

Dissipative particle dynamics simulations in the grand canonical ensemble: applications to polymer brushes.

We have used the dissipative particle dynamics (DPD) method in the grand canonical ensemble to study the compression of grafted polymer brushes in good solvent conditions. The force-distance profiles calculated from DPD simulations in the grand canonical ensemble are in very good agreement with the self-consistent field (SCF) theoretical models and with experimental results for two polystyrene ...

متن کامل

Grand canonical ensemble simulation studies of polydisperse fluids

We describe a Monte Carlo scheme for simulating polydisperse fluids within the grand canonical ensemble. Given some polydisperse attribute σ, the state of the system is described by a density distribution ρ(σ) whose form is controlled by the imposed chemical potential distribution μ(σ). We detail how histogram extrapolation techniques can be employed to tune μ(σ) such as to traverse some partic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 128 12  شماره 

صفحات  -

تاریخ انتشار 2008